August Rush

一个还在努力成长的小火汁!

游龙当归海,海不迎我自来也。

We create our own demons.

You can reach me at augustrush0923@gmail.com
迭代器和生成器
发布:2020年08月06日 | 作者:augustrush | 阅读量: 478

迭代和可迭代协议


迭代


简单来说,可以被for循环遍历都是可迭代的

from collections import Iterable

list = [1,2,3,4]
dict = {"a":1, "b":2, "c":3}
tuple = (1,2,3,4)
set = {1,2,3,4}

print(isinstance(list, Iterable))  # True
print(isinstance(dict, Iterable))  # True
print(isinstance(tuple, Iterable))  # True
print(isinstance(set, Iterable))  # True


其实迭代就是,可以将某个数据集内的数据“一个挨着一个的取出来”,就叫做迭代

可迭代协议


能被for循环的就是“可迭代的”,但是如果正着想,for怎么知道谁是可迭代的呢?

假如我们自己写了一个数据类型,希望这个数据类型里的东西也可以使用for被一个一个的取出来,那我们就必须满足for的要求。这个要求就叫做“协议”。

通过打印可迭代对象的dir方法就会发现它们的共同点

print(dir(list))
print(dir(dict))
print(dir(tuple))
print(dir(set))


['__add__', '__class__', '__contains__',...'__iter__',...]
['__class__', '__contains__', '__delattr__',...'__iter__',...]
['__add__', '__class__', '__contains__',...'__iter__',...]
['__and__', '__class__', '__contains__',...'__iter__',...]


可以被迭代要满足的要求就叫做可迭代协议。可迭代协议的定义非常简单,就是内部实现了__iter__方法

结一下我们现在所知道的:可以被for循环的都是可迭代的,要想可迭代,内部必须有一个__iter__方法。

__iter__方法做了什么事情呢?

print(list.__iter__)  # ----> <list_iterator object at 0x1024784a8>


执行了list([1,2])的__iter__方法,我们好像得到了一个list_iterator,现在我们又得到了一个新名词——iterator。

迭代器协议


既什么叫“可迭代”之后,又一个历史新难题,什么叫“迭代器”?

虽然我们不知道什么叫迭代器,但是我们现在已经有一个迭代器了,这个迭代器是一个列表的迭代器。

我们来看看这个列表的迭代器比起列表来说实现了哪些新方法,这样就能揭开迭代器的神秘面纱了吧?

'''
dir([1,2].__iter__())是列表迭代器中实现的所有方法,dir([1,2])是列表中实现的所有方法,都是以列表的形式返回给我们的,为了看的更清楚,我们分别把他们转换成集合,
然后取差集。
'''
#print(dir([1,2].__iter__()))
#print(dir([1,2]))
print(set(dir([1,2].__iter__()))-set(dir([1,2])))

# 结果:
# {'__length_hint__', '__next__', '__setstate__'}


我们看到在列表迭代器中多了三个方法,那么这三个方法都分别做了什么事呢?

iter_l = [1,2,3,4,5,6].__iter__()
#获取迭代器中元素的长度
print(iter_l.__length_hint__())
#根据索引值指定从哪里开始迭代
print('*',iter_l.__setstate__(4))
#一个一个的取值
print('**',iter_l.__next__())
print('***',iter_l.__next__())


这三个方法中,能让我们一个一个取值的是__next__

在for循环中,就是在内部调用了__next__方法才能取到一个一个的值。

那接下来我们就用迭代器的next方法来写一个不依赖for的遍历。

l = [1,2,3,4]
l_iter = l.__iter__()
item = l_iter.__next__()
print(item)
item = l_iter.__next__()
print(item)
item = l_iter.__next__()
print(item)
item = l_iter.__next__()
print(item)
item = l_iter.__next__()
print(item)


这是一段会报错的代码,如果我们一直取next取到迭代器里已经没有元素了,就会抛出一个异常StopIteration,告诉我们,列表中已经没有有效的元素了。

这个时候,我们就要使用异常处理机制来把这个异常处理掉。

l = [1,2,3,4]
l_iter = l.__iter__()
while True:
    try:
        item = l_iter.__next__()
        print(item)
    except StopIteration:
        break


那现在我们就使用while循环实现了原本for循环做的事情,我们是从谁那儿获取一个一个的值呀?是不是就是l_iter?好了,这个l_iter就是一个迭代器。

迭代器遵循迭代器协议:必须拥有__iter__方法和__next__方法。

range()肯定是一个可迭代对象,那它是不是一个迭代器呢?来测试一下

print('__next__' in dir(range(12)))  # False
print('__iter__' in dir(range(12)))  # True

from collections import Iterator, Iterable
print(isinstance(range(100000000),Iterator))  # False
print(isinstance(range(100000000),Iterable))  # True


为什么要有for循环

基于上面讲的列表这一大堆遍历方式,聪明的你立马看除了端倪,于是你不知死活大声喊道,你这不逗我玩呢么,有了下标的访问方式,我可以这样遍历一个列表啊

l=[1,2,3]

index=0
while index < len(l):
    print(l[index])
    index+=1

#要毛线for循环,要毛线可迭代,要毛线迭代器


没错,序列类型字符串,列表,元组都有下标,你用上述的方式访问,perfect!但是你可曾想过非序列类型像字典,集合,文件对象的感受,所以嘛,年轻人,for循环就是基于迭代器协议提供了一个统一的可以遍历所有对象的方法,即在遍历之前,先调用对象的__iter__方法将其转换成一个迭代器,然后使用迭代器协议去实现循环访问,这样所有的对象就都可以通过for循环来遍历了,而且你看到的效果也确实如此,这就是无所不能的for循环,觉悟吧,年轻人

生成器


初始生成器

我们知道的迭代器有两种:一种是调用方法直接返回的,一种是可迭代对象通过执行iter方法得到的,迭代器有的好处是可以节省内存。

如果在某些情况下,我们也需要节省内存,就只能自己写。我们自己写的这个能实现迭代器功能的东西就叫生成器。

Python中提供的生成器:

1.生成器函数:常规函数定义,但是,使用yield语句而不是return语句返回结果。yield语句一次返回一个结果,在每个结果中间,挂起函数的状态,以便下次从它离开的地方继续执行

2.生成器表达式:类似于列表推导,但是,生成器返回按需产生结果的一个对象,而不是一次构建一个结果列表



生成器Generator:

本质:迭代器(所以自带了__iter__方法和__next__方法,不需要我们去实现)

特点:惰性运算,开发者自定义



生成器函数

一个包含yield关键字的函数就是一个生成器函数。yield可以为我们从函数中返回值,但是yield又不同于return,return的执行意味着程序的结束,调用生成器函数不会得到返回的具体的值,而是得到一个可迭代的对象。每一次获取这个可迭代对象的值,就能推动函数的执行,获取新的返回值。直到函数执行结束。

import time
def genrator_fun1():
    a = 1
    print('现在定义了a变量')
    yield a
    b = 2
    print('现在又定义了b变量')
    yield b

g1 = genrator_fun1()
print('g1 : ',g1)       # <generator object genrator_func1 at 0x10d2d1678>
print('-'*20)   #我是华丽的分割线
print(next(g1))
time.sleep(1)   #sleep一秒看清执行过程
print(next(g1))


生成器有什么好处呢?就是不会一下子在内存中生成太多数据

假如我想让工厂给学生做校服,生产2000000件衣服,我和工厂一说,工厂应该是先答应下来,然后再去生产,我可以一件一件的要,也可以根据学生一批一批的找工厂拿。 而不能是一说要生产2000000件衣服,工厂就先去做生产2000000件衣服,等回来做好了,学生都毕业了。。。

#初识生成器二

def produce():
    """生产衣服"""
    for i in range(2000000):
        yield "生产了第%s件衣服"%i

product_g = produce()
print(product_g.__next__()) #要一件衣服
print(product_g.__next__()) #再要一件衣服
print(product_g.__next__()) #再要一件衣服
num = 0
for i in product_g:         #要一批衣服,比如5件
    print(i)
    num +=1
    if num == 5:
        break

#到这里我们找工厂拿了8件衣服,我一共让我的生产函数(也就是produce生成器函数)生产2000000件衣服。
#剩下的还有很多衣服,我们可以一直拿,也可以放着等想拿的时候再拿


send


我们除了可以使用next()函数来唤醒生成器继续执行外,还可以使用send()函数来唤醒执行。使用send()函数的一个好处是可以在唤醒的同时向断点处传入一个附加数据。

def generator():
    print(123)
    content = yield 1
    print('=======',content)
    print(456)
    yield2

g = generator()
ret = g.__next__()
print('***',ret)
ret = g.send('hello')   #send的效果和next一样
print('***',ret)


send 获取下一个值的效果和next基本一致

只是在获取下一个值的时候,给上一个yield的位置传递一个数据

使用send的注意事项

第一次使用生成器的时候 是用next获取下一个值 最后一个yield不能接受外部的值



yield from

def gen1():
    for c in "AB":
        yield c
    for i in range(3):
        yield i

print(list(gen1())) # ----> ['A', 'B', 0, 1, 2]

def gen2():
    yield from 'AB'
    yield from range(3)

print(list(gen2())) # ---->['A', 'B', 0, 1, 2]


生成器表达式

In [15]: L = [ x*2 for x in range(5)]

In [16]: L

Out[16]: [0, 2, 4, 6, 8]

In [17]: G = ( x*2 for x in range(5))

In [18]: G

Out[18]: <generator object <genexpr> at 0x7f626c132db0>

In [19]:


创建 L 和 G 的区别仅在于最外层的 [ ] 和 ( ) , L 是一个列表,而 G 是一个生成器。我们可以直接打印出列表L的每一个元素,而对于生成器G,我们可以按照迭代器的使用方法来使用,即可以通过next()函数、for循环、list()等方法使用。

总结:

1.把列表解析的[]换成()得到的就是生成器表达式

2.列表解析与生成器表达式都是一种便利的编程方式,只不过生成器表达式更节省内存



  • 标签云

  • 支付宝扫码支持一下

  • 微信扫码支持一下



基于Nginx+Supervisord+uWSGI+Django1.11.1+Python3.6.5构建

版权所有 © 2020-2021 August Rush

京ICP备20007446号-1 & 豫公网安备 41100202000460号

网站地图 & RSS | Feed